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Abstract. The three-dimensional Gross—Neveu modeRthx M2 spacetime, whera/? is a

weakly curved two-dimensional surface, is investigated, using an effective potential at a finite
curvature R and nonzero chemical potential. The critical values of(R, u) are derived,

such that a system undergoes the first-order phase transition from the phase with broken chiral
invariance to the symmetric phase. The fermion density is found to be of nonanalytic behaviour
at the critical value of the chemical potential.

1. Introduction

Recently four-fermion field theories i(2 4+ 1)-dimensional Minkowski spacetime, which

are known as Gross—Neveu (GN) models [1], are under extensive investigation for purely
theoretical motivation and also because of their applications to planar condensed matter
physics. Such theories possess many desirable properties: the renormalizability jivthe 1
expansion, dynamical breaking of chiral symmetry and generation of fermion mass for a
large coupling constant as in QCD [2], the analogy to the BCS theory of superconductivity
in two spatial dimensions and the possibility of describing a new phenomenon of high-
temperature superconductivity [3], the reduction to the= % guantum antiferromagnet
Heisenberg model in the continuum limit [4] and so on. The main features of these models,
obtained using the larg& expansion technique, are confirmed within the framework of
other nonperturbative approaches [5].

Since there are no closed physical systems in nature, the influence of different external
factors on the vacuum of the simplest GN model was considered. In [6] some critical
phenomena of this theory were studied at nonzero temperatared chemical potentiat.

Recently, on the same foundation a new property of external (chromo-)magnetic field
H to promote the dynamical chiral symmetry breaking has been discovered [7]. (At present
it is the well known effect of a dynamical chiral symmetry breaking catalyst by external
magnetic field [8], which is under intensive consideration [9].) The rol&, 07 as well as
of u, H in the formation of a ground state of the GN model has also been clarified [10].

The study of dynamical symmetry breaking in spacetimes with curvature and nontrivial
topology is also of great importance, since in the early universe the gravity was sufficiently
strong and one should take it into account. A copious amount of literature on this subject is
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available (see the review [11]). The effect of curvature and nontrivial topology on the chiral
symmetry breaking in four-fermion models was first discussed in [12, 13]. The curvature-
induced first-order phase transition from a chirally symmetric to a chirally nonsymmetric
phase was shown to exist in those models in the linear curvature approximation. It turns
out that in specific spacetimes such as the Einstein universe [14] and maximally symmetric
spacetimes [15] the above-mentioned models can be solved exactly in the leading order of
the largeN expansion technique. Finally, dynamical symmetry breaking in the external
gravitational and magnetic fields is considered in [16].

It is well known that low-dimensional four-fermion field theories, especially(f 1)-
dimensional GN model, in curved spacetimes [13,17-19] and in the nonsimply connected
spacetimes [20, 21] may be very useful for the investigation of physical processes in thin
films and in the materials with layer structure. The point is that an external stress, applied
to the planar system, can change the topology and curvature of a surface. A great amount
of observable physical phenomena are due to nonzero particle density (superconductivity,
guantum Hall effect, etc). Thus, here the influence of both chemical potential and curvature
of space on the phase structure of {Be-1)-dimensional GN model is studied. In particular,
we shall consideiR? x M? spacetime to clarify our discussion. Hem# is an arbitrary
weakly curved noncompact two-dimensional spatial surface.

In section 2 we evaluate the one-loop effective potenti&’isx M2 spacetime at nonzero
chemical potential. In this we suppose that the surfid@ecurves slowly, so we only keep
terms independent of curvatureand terms linear irR. Section 3 gives a detailed analysis
of the effective potential, which shows the existence of a phase transition restoring the chiral
symmetry of the system while the curvatuteand chemical potential are varied. Finally,
we summarize our results in section 4.

2. Effective potential in R x M? spacetime aty # 0

The four-fermion model in th&?® x M? spacetime, wher#/? is the two-dimensional weakly
curved space, is described by the action [11, 13, 18]

- A2
S = /d3x¢Tg[|¢jy“(x)vM¢j + ﬁ(wjvfj)z} 1)

whereg is the determinant of the spacetime meyijg, V, is the covariant derivative and
the summation ovey is implied (j = 1,2,..., N). Here fermion fields); are taken in
the reducible four-dimensional representationS@f(2, C). In this case the algebra of the
y-matrices is presented in [2]. This action has the discrete chiral symmetry,

Vv — ysy. 2

As a result, the chiral symmetry is maintained at any order of ordinary perturbation
theory. However, as is evident from different nonperturbative approaches [1, 2, 5] the
symmetry may be broken dynamically for large values of the coupling constahd see

the nonperturbative features such as spontaneous symmetry breaking and dynamical mass
generation in this model, it is convenient to rewrite the above action in an equivalent form
[1] by introducing the auxiliary fieldr (x),

- _ N
S = /de v—g [|wjyﬂ(x)vuwj — oy — ﬁoz} . )

This expression suggests explicitly that the vacuum expectation value of fredd
plays the role of mass for the fermions. In order to find the effective potential in the theory
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with the action of equation (1), we follow [12, 13] where this quantity was considered in a
weak curvature approximation. First, let us integrate over the fermion fields in equation (3)
and evaluate an effective actidhz(o) describing the self-interaction of the field:

EXPiN Set(0)) = f Dy DY expliS(y. 7. 0)]. @)

Here we use the /IV expansion which is the fermion-loop expansion. In the mean-field
approximation, where the(x) field is assumed to be constant, and to the leading order in
the largeN, one can obtain the one-loop effective potentigb) from the actionSeg(o):

o2
Ule) =5+ itr{x|In(iy*(x)V, —o)lx) (5)

where tr is over |nd|ces other than spacetime indices. Using the Green fugttion y; o)
defined by the relation

Gr(x,y;0) = (x| (iy"V, — o) Hy) (6)
we rewrite equation (5) as follows

02
U(o) = —itrinGr(x, x; 0). ©)

The logarithm can be ehmmated from this equation by introducing the parameter

|n[K_“]=—/ st
0 K—S

where an operatoK is given asy*(x)V,, in this case. Therefore, equation (7) is rewritten
in the following form

C)

d®k
(2n)3
where the momentum-space Green function(k; s) has been used. One can now introduce

the Riemann normal coordinate [22] with origin at any point in the spacetime. In this local
coordinate system we use the weak curvature approximation for the Green fuGigtibns):

U(o) = ——Itl’/ ds | ——=Gr(;s) 9)

vk, +s R y%%k,+s 2 L (ke +5)
Grikis)="5—5 15 (k2 — 52)2 3 Runk"k (k2 — 52)3
1, . 1
— YT Reqap k" ———= 10
2V dap (k2 — 32)2 ( )

where J* = %[y“, ¥®1, and the Latin and Greek indices refer to a local orthonormal frame
and general coordinate system, respectively. Equation (10) is the linear approximation for
the Green functionGr(k; s) in the curvatureR [11-13]. According to the well known
method developed in [23], one should neglect any terms involving derivatives higher than
those of the second order in the metric tensor expansion to obtain equation (10).

Let us now consider the effect of nonzero chemical potentian the system. It is
common knowledge that the fermion-number density is directly related to the chemical
potential x. Mathematically, the presence of a nonzero chemical potential is realized by
shifting the energy level&; in the propagatot r(k; s) by the amount ofx [24]. Thus, we
are able to evaluate the effective potentialo) in equation (9) under the effects of both
R and . Using the contour integration method [24], we can perform the integration over
momentumk#”. Denotel; as the integral of the first term iG'(k; s) overk ands. Its
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calculation proceeds as follows. First, the procedure of integration igyetenoted ad;,
gives the result:

dko 10 (k i,
Ii(k,s)ztr/_oy(0+u)+y 2+s
2n (ko +W)? - Ef
2 ioco SdZ 2% SdZ
c 22— E?

B T J_ico Zz - E]g ;
2 [1®  sdz 2is
== 0w - Ep). 11
S . + E, (n 9) (11)
Here, E? = k? + s2, the contourC is given in figure 1, and the unit step function
O(x)=1forx > 0,0(x) =0 for x < 0 has been used. Thus, we find

(e Pk
[1=—|‘/(; dsfwll(k,s)
2

3
—0o [i - A] 1O —o) [—02 — icﬁ] +o60 - (12
3r w2 T 6
where A is the cut-off parameter. Here and in what follows, we can confine ourselves to
theo > 0 region owing to a reflection symmetey <+ —o of the effective potential/ (o).
However, note that this symmetry is broken when the system selects one of the two ground
states. In a similar way one finds the contributiaas/’s, I, of the remaining terms of

Gr(k; s) to the potential (9):

= — | Ro — Rop| 6 152) 4o 1
3—@[0— oo[ (M—0)<0—50>+ (U—M)EH
1

-~ R
127 0

Iy = 0. (13)

Im kY

100

Re k°

—100

Figure 1. The contourC in the complexk° plane.
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We confine ourselves to thRyg = 0 case without losing the generality of our discussion.
Thus, in the third line of equation (13), we have &t = 0. However, the fourth line of
equation (13) is due to a relation #fly/y*] = 0.
At this stage it is convenient to introduce the mass paran#tarstead of the coupling
constanti in the following way [2]
1 4 A kg 1

22 (27)3 k2 + M?
2 1
= SA- M. (14)
T b

Thus, we shall consider the case- A, only, wherex_2 = 4fA kg (27) 3k ;2. Summing

up all of the terms/; in equations (12) and (13) and inserting the above equation into
equation (9), one sees that the twodependent terms cancel out, and thus the finite
effective potential to one-loop order is obtained. Then, gheand R-dependent one-loop
contributionsU,%u(a) to the potentiall (o) are completely separated from the Minkowski-
space result:

U(o) = Ur(o) + Ug, (o) (15)
whereUr (o) is the effective potential of the original theory in the flat Minkowski spacetime.
Here

5[ -3v]
Up(o0)=—|oc—=M

37 2
UL(0) =~ + 201 — ) < -2 >U—2+5< —6—2>
Ru\O) = oy O T TN\ T 37 ) T o4\ T
1 , R
+§9(0 ) |:pL (/L + §):| . (16)

In this expression one can find the following two facts. Fiﬂﬁw(o) is finite and, as
R, u—0, U,%H (o) vanishes. Thus, the renormalization procedure is identical to the case of
Minkowski spacetime. Second, in the limit, R — 0, U (o) is reduced to the Minkowski-
space effective potentidlr (o).

It is well established that there are two distinct phases in the three-dimensional GN
model [1, 2, 7]. For a weak coupling phase with the coupling A., we have(c) = 0.
Thus, the fermions are massless and the chiral symmetry remains intact. However, for the
strong coupling phaske > A, theo field has a honzero vacuum expectation vakig= M,
so the chiral symmetry of the expression (1) is dynamically broken and fermions acquire
the mass, which is equal to the mass param&étdrom equation (14).

For simplicity of our analysis in the following sections, we shall introduce the following
rescaled dimensionless quantities defined/&s) = 7U (0)/u3 R = R/u? x = o/u, and
a = u/M. In terms of these quantities, equation (15) is rewritten in the much simpler

form:
1 R\ x2 Rx
1-———— =+ f 1
( 7 24>2+12 orx <

3 x2+I§x+l 1+§ forx >1

YT 21)3 72276 8 *Z
where U (x) is a continuous function at = 1. We also wish to find the induced fermion
mass(o) as a function of curvatur& and chemical potentigt. Then, the gap equation for

U(x) = (17)
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the fermion mass can be obtained by taking the derivative of the effective potétitial
with respect tar, and so we obtain

1 1_k& +Ié for 1
. i 24] T 12 =

, x R
_ 4= for x > 1.
X [L+24 X

(18)

3. Restoration of chiral symmetry

Now we shall analyse in detail the effective potential of equation (17) in order to investigate
the phase structure of the model in {tie 1) plane. The fermion magg) shall be derived,
which depends o and x, and the nature of the phase transitions shall be discussed. For
clarity, we consider three distinct cases:# 0 andR = 0, thenR # 0 andu = 0, and
finally R £ 0 andu # 0.

3.1. Thecasee #0andR =0

First let us examine the effect of nonzero chemical potential on the system. In the limit
R — 0, the effective potential of equation (17) is reduced to a simple form:

2
<1—i>% forx <1
U(x) = ’ (19)
3 x2+1 forx > 1
*T2.)3 76 rZs

To see a phase transition asincreases from a broken phase to a symmetric one, it is
necessary to examine the behaviourlafr) as a function ofi. It is possible to find the
following two properties ofU (x). For iz > 1, U(x) is a monotonically increasing function
of x, and so the global minimum df (x) occurs atx = 0. While forz < 1, U(x) has a
global minimum atx = 1/ with the value:

. 1 11— 38

Ulx==)=—=—-+-—. 20

(x ﬁ) 6 (20)

These facts indicate that the system undergoes a phase transition frgm) theM state
to the (o) = O state at the critical valug. of the chemical potential, given as

He =M. (21)

By solving the gap equation for the induced fermion mass, equation (18)RwthO, one
can find that

(0)=M (22)

below u., and (o) = 0 aboveu.. Except whenu = u., the order parametef) does
not depend on the value @f. That is, the value of order parameter), which minimizes
the potential, jumps discontinuously frota) = M to (o) = 0 at the transition pointc..
Hence, at the pointt = . we have a first-order phase transition from a massive chirally
broken phase to a massless chirally invariant phase of the model.
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3.2. Thecas® #0andu =0

In this case only the effect of curvature on the system shall be considered. In the limit
u — 0, the general effective potential of equation (17) has the following form

U(o) = Urp(o) + Ug(o)
2
o <a - §M> + 2 (23)

This expression coincides with that obtained in [14, 18]. From equation (23) one can see
that in the region of small values ef the dominant contribution t&/ (o) comes from the
R-dependent linear term ia. Thus, for all values ofR > 0O there is a potential barrier
betweens = 0 and the second local minimum 6f(c). As a result, it turns out that with

the increase of curvatur the discontinuous phase transition occurs from a chirally broken
phase to a symmetric one. The critical value of the curvaReat which a first-order
phase transition occurs, is defined by the following two conditions

U/(O'o) =0 and U(og) =0 (24)

where oy denotes the second nonzero local minimum of the potential. Furthermore, one
can find that only forR > R, the minimum of the potential at the symmetric point= 0

is lower than the asymmetric local minimum at a nonzego From the gap equation (18)
with u = 0, one can evaluate the local minimum of the potential

M 1R
=—|1+,/1-Z— 25
=7 ( + 6M2> (29)
which at the same time is equal to the fermion masgs induced under the influence of
curvaturer for R < R, only. Thus, by applying the critical condition equation (24) to the

effective potential of equation (23), one can obtain the critical curvature
R. = 45M?. (26)

The phase transition under the influence Rfis a first-order one since it occurs
discontinuously. The same result for the in the (2+ 1)-dimensional GN model in
an arbitrary weakly curved spacetime was obtained in [11, 18].

3.3. Thecas&k #0andu #0

In this section we shall explore a general case wherein the system is specified by the
curvature and finite chemical potential. To investigate the vacuum structure of the system
when R and . are varied, one must first examine the behaviour of the potetiiia) as a
function of R and . It is very helpful to sketch qualitatively the effective potentiax)
from equation (17). Fofi > 1(u > M) the global minimum ofJ (x) only occurs atc = 0.
While for i < 1 (1 < M), the second local minimum df (x) certainly lies at a nonzero
point. Therefore, whepx < 1, it turns out that the system undergoes a phase transition from
the (o) # 0 vacuum state to thér) = O state at a certain critical curvatufe depending
on u. Using a more detailed analysis of the effective poteriiiat) in equation (17), one
can see that until the system approaches the critical point with the increase of curvature,
the second local minimum o/ (x) occurs only in the region > 1. Therefore, in the
procedure of determining the critical value of the curvatirethe effective potential needs
to be considered only in the > 1 region in equation (17).

In this case we can obtain the critical curvatwe also using the condition given in
equation (24), with the only changg — xo, wherexg denotes the second local minimum
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of the potential. That is, in this case the phase transition under investigation is also a first-
order one. As can easily be checked from the gap equation (18), the second minimum lies

at the point
1 | Ri2
=—1|1 1-—. 27
X0 20 + 6 (27)

Thus, the critical condition of equation (24) with this value ferleads to the self-consistent
relation on the critical curvatur®,:

2452 )
163 — Z20 | (250 + DR +8=0 (28)
I

where xo has the value given in equation (27), with replaced byR.. The numerical
solutions of equation (28) are illustrated in figure 2. Note, that with—~ 0, the R,
approaches 8M? and with R — 0, the . approachesV. These limiting cases have
already been discussed in the previous sections 3.1 and 3.2. Equation (27) suggests that the
induced fermion masér), with (o) = uxg, only depends on the curvatuRe That is, (o)

does not depend on, and thus has the same expression as in equation (25). In figure 3,
the effective potentials are given for four distinct valueskoét fixed u = %

4. Summary and discussion

In this paper we have derived the effective potential of the three-dimensional Gross—Neveu
model in the curved spacetime of the forRt x M? and with taking into account the

5

4
R¢
M2

3 S

2

B
1
0
0.2 04 0.6 0.8 1

p/M

Figure 2. The critical curvaturer./M? as a function of nonzero chemical potentigiM. In
region B, chiral symmetry is broken and fermions acquire dynamical masses, while in S, the
symmetry is restored by the curvature effect, and the fermions become massless.
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0.5

U(o) 0.

A3
0.3

0.2

0.1

0.2 04 06 0.8 1 12 14 16
o/M

Figure 3. The effective potentiahU_(a)/M3 as a function ofo/M at the fixed value of
w/M = %._ Four interesting cases a@t, where R = R/M?, are considered, and the critical
curvaturer, is then obtained numericallyR, = 2.96.

chemical potentials as well. Then, the critical curvatuR. at which dynamical symmetry
breaking disappears, was determined in terms of the induced fermionMhasghe limit
R, n — 0 and at nonzero chemical potentjal as given in figure 2.

In sections 3.1 and 3.3 it was shown that at fixed curvaRire R. a critical value
of the chemical potentigk.(R) was available. In this critical point the system undergoes
a chiral phase transition of the first order. We also observed that the order parasjeter
of the phase transition, corresponding to the minimum of the potential, did not depend
on the value ofu, except at the critical valug = u., even though the phase transition
was induced by the chemical potential. This phenomenon is connected to the fact that the
composed fieldr ~ ¥ is a real field and carries no charge. It was also observed in the
two-dimensional GN model iR! x S* spacetime [21], however, in that model there is
another massive phase, in which fermion mass jis@dependent quantity.

Furthermore, by analysing equation (21) one can come across an interesting fact. Let
us suppose that the particle densityu) of the system is not zero. In this case, by analogy
with condensed matter physics, the chemical potential corresponds to the Fermi energy,
that must be greater than the minimal energy of one fermion,u.e: (o). Hence, at
uw < u. = M there is a massive phase of the theofy)(= M), at which N(x) equals
zero. Atu > u. = M the symmetric phase of the model is arranged. Here fermion
density in the vacuum is not zero, and at the critical pgint= M, the functionN (1)
is a discontinuous one. Recently, a similar nonanalytic behaviour of the Chern—-Simons
coefficient in the presence of chemical potential has been found(ZHal)-dimensional
QED [25].

In this paper we have dealt with noncompact manifald$ only. We wish to remark
that for the case with compact surfadef€ the weak curvature technique is not applicable.
Indeed, in [14] the three-dimensional GN model &1 x $? spacetime and at nonzero
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temperature was considered. There the exact expression for the effective potential was
calculated and it was shown that chiral phase transitio®in< S? spacetime is always

the second-order one, even at sufficiently sniallAt the same time in the framework of
weak curvature expansion one can find the first-order chiral phase transition. Hence, as
was pointed out in [18], global topology of low-dimensional spacetimes plays an essential
role in critical phenomena. However, in four-dimensional spacetime the weak curvature
approximation is a rather good one in cases with compact as well as honcompact spaces
[18].

In section 3.2 we have shown th&t = 4.5M? at u = 0. This can roughly be seen
from the following two facts. First, on dimensional grounds the critical curvaiyrenust
be proportional to the square of some quantity with the dimension of mass. Second, the
effective potential for the composite field in equation (23) has two paramet&®sand M,
and so, the remaining parameter apart fr&nmn this theory isM. Note, that our value for
R. is found in a weak curvature limit, and thus its more accurate value can be obtained
by considering higher order corrections over the scalar curvaRureHowever, in such
improved schemes, it is expected that the system still shows the same qualitative properties
as those found in the previous sections, including the occurrence of a first-order phase
transition. (In [18] some speculations about the validity of the weak curvature expansion
for large values ofR are presented.)

Finally, one may consider the case of negative curvature since this method has the
advantage of being applicable to any metric. Then, equation (25) indicates that under the
effect of negative curvatur& the minimum of the potential is located further from the
origin than without the curvature effect. Therefore, in this case the symmetry restoring
phase transition does not happen.

We hope that the above results may be useful for condensed matter physics and for
astrophysical applications, in particular for the description of different phenomena in the
core of neutron stars.
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